Explicit Serre duality on complex spaces

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Math 233a Final Presentation: Serre Duality for Projective Spaces

Let V be a vector space of dimension n+1 over a field k, and consider the scheme X = PV ∼= Pk ∼= Proj(k[x0, . . . , xn]). Consider F a quasi-coherent sheaf over X. We can examine its Cech cohomology which coincides with its sheaf (nonetale) cohomology because X is Noetherian and separated (cf. Hartshorne, ch. III theorem 4.5.). Particularly, H(X,F) ∼= Γ(F , X). However Γ(F , X) ∼= HomX(OX ,F). ...

متن کامل

Generalized Serre duality

We introduce the generalized Serre functor S on a skeletally-small Hom-finite Krull-Schmidt triangulated category C. We prove that its domain Cr and range Cl are thick triangulated subcategories. Moreover, the subcategory Cr (resp. Cl) is the smallest additive subcategory containing all the objects in C which appears as the third term (resp. the first term) of some Aulsander-Reiten triangle in ...

متن کامل

Serre Duality and Applications

We carefully develop the theory of Serre duality and dualizing sheaves. We differ from the approach in [12] in that the use of spectral sequences and the Yoneda pairing are emphasized to put the proofs in a more systematic framework. As applications of the theory, we discuss the RiemannRoch theorem for curves and Bott’s theorem in representation theory (following [8]) using the algebraic-geomet...

متن کامل

The Riemann-roch Theorem and Serre Duality

We introduce sheaves and sheaf cohomology and use them to prove the Riemann-Roch theorem and Serre duality. The main proofs follow the treatment in Forster [3].

متن کامل

Serre Duality for Non-commutative P-bundles

Abstract. Let X be a smooth scheme of finite type over a field K, let E be a locally free OX -bimodule of rank n, and let A be the non-commutative symmetric algebra generated by E. We construct an internal Hom functor, HomGrA(−,−), on the category of graded right A-modules. When E has rank 2, we prove that A is Gorenstein by computing the right derived functors of HomGrA(OX ,−). When X is a smo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Mathematics

سال: 2017

ISSN: 0001-8708

DOI: 10.1016/j.aim.2016.10.013